

## **Airservices Australia**

Yulara Airport Groundwater sampling results for bore RN012065

August 2019

## **Table of contents**

| 1. | Introc | luction                                        | 1 |
|----|--------|------------------------------------------------|---|
|    | 1.1    | Background                                     | 1 |
|    | 1.2    | Scope of works                                 | 1 |
|    | 1.3    | Scope and limitations                          | 1 |
| 2. | Site s | setting                                        | 3 |
|    | 2.1    | Climate and weather                            | 3 |
|    | 2.2    | Geology and hydrogeology                       | 3 |
|    | 2.3    | Preliminary groundwater sensitivity assessment | 4 |
| 3. | Field  | investigations                                 | 5 |
|    | 3.1    | Site observations                              | 5 |
|    | 3.2    | Methodology and results                        | 5 |
| 4. | Analy  | rtical results                                 | 6 |
|    | 4.1    | PFAS concentrations                            | 6 |
|    | 4.2    | Quality assurance / quality control            | 6 |

## Table index

| Table 2-1 | Bores within 2-km of Yulara Airport (from NR Maps Water Portal Database) | 4 |
|-----------|--------------------------------------------------------------------------|---|
| Table 3-1 | Field water quality parameters                                           | 5 |

## **Figure index**

## **Appendices**

Appendix A – Figures

Appendix B - Analytical results

Appendix C - Calibration certificates and lab documentation

## 1. Introduction

This report is subject to, and must be read in conjunction with, the limitations set out in section 1.3 and the assumptions and qualifications contained throughout the Report.

## 1.1 Background

GHD was engaged by Airservices Australia (ASA) to sample groundwater from the existing groundwater bore RN012065, located within the Connellan Airport (the Site). The airport is located at 200 Coote Road (Lot 101, Town of Yulara) approximately 4.1 km northwest of Yulara Township, as shown in Figure 1, Appendix A. The groundwater bore RN012065 is located approximately 700 m northwest of the main Airport Terminal, or 95 m north of the airport Fire Station building, as shown in Figure 2, Appendix A.

### 1.2 Scope of works

The purpose of the groundwater sampling event was to provide an initial assessment of the potential for per and poly-fluoroalkyl substance (PFAS) impact to local groundwater quality. The following scope of works was undertaken:

- Gauging of the well using an oil-water interface probe to record depth to water and to assess whether light non-aqueous phase liquid (LNAPL) was present
- Sampling of groundwater, which was conducted via 'no-purge' HYDRAsleeve methods
- Analysis of the groundwater sample for PFAS content
- Comparison of field measurements and analytical results to applicable environmental guidelines
- Preparation of this letter report

### 1.3 Scope and limitations

This report has been prepared by GHD for Airservices Australia and may only be used and relied on by Airservices Australia for the purpose agreed between GHD and the Airservices Australia as set out in section 1.2 of this report.

GHD otherwise disclaims responsibility to any person other than Airservices Australia arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described throughout this report. GHD disclaims liability arising from any of the assumptions being incorrect.

GHD has prepared this report on the basis of information provided by Airservices Australia and others who provided information to GHD (including Government authorities), which GHD has not independently verified or checked beyond the agreed scope of work. GHD does not accept

liability in connection with such unverified information, including errors and omissions in the report which were caused by errors or omissions in that information.

The opinions, conclusions and any recommendations in this report are based on information obtained from, and testing undertaken at or in connection with, specific sample points. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points.

Investigations undertaken in respect of this report are constrained by the particular site conditions, such as the location of buildings, services and vegetation. As a result, not all relevant site features and conditions may have been identified in this report.

Site conditions (including the presence of hazardous substances and/or site contamination) may change after the date of this Report. GHD does not accept responsibility arising from, or in connection with, any change to the site conditions. GHD is also not responsible for updating this report if the site conditions change.

2. Site setting

#### 2.1 Climate and weather

Yulara is located within a semi-arid environment, with an average annual rainfall of 283 mm and with average high and low temperatures ranging from 38.5 °C (January) and 4.4 °C (July). (BOM, 2019; Yulara Airport, Station 015635). Annual rainfall is unpredictable though, as shown in Figure 2-1. Yulara is south of the Tropic of Capricorn and most rainfall received is generated from equatorial troughs moving south from the northern Australia wet season (November to April). As such, December is the wettest month on average (45.4 mm) and August the driest (5 mm).

The year to date rainfall total (to June 2019) measured at Yulara Airport was 20-mm, which is considerably below the average.



Figure 2-1 Annual rainfall over past decade (mm per calendar year, Yulara Airport)

### 2.2 Geology and hydrogeology

The Site is situated within the Amadeus Basin, which is composed of sediments dating to the Neoproterozoic and Palaeozoic era, overlain by Cainozoic deposits. The Cainozoic deposits are regionally important as they lie within a previous southeast / northwest oriented paleo-valley. The depth of this strata ranges from 27 to 140 metres below ground level (m,bgl) around the Yulara area. The Cainozoic strata are deposition products from the erosion of nearby highland areas and are comprised of sands, silts and clays. Borelogs from the area generally describe the lithology as a sequence of sand and clay layers with siltstone generally encountered at depths beyond 30 m.

The Cainozoic strata hosts some groundwater, but the main aquifer exists within the basement strata. In combination, these groundwater units represent the 'Dune Plains Aquifer', which flows northwards, towards the ephemeral salt lake, Lake Amadeus.

RN012065 was installed in 1979 to an approximate depth of 37.5 m and remains as the only registered bore within the airport (according to the NR Maps database). Water samples collected in 1979 showed the water was suitable for stock-watering but not for human consumption due to elevated total dissolved solids.

Six other monitoring or investigation bores exist within 2 km to the south and southeast of the Site, as listed below in Table 2-1. Although reported standing water levels occur around 12 and 14 m,bgl, the depth of initial water strike in these bores is generally deeper, typically between 18 and 30 m,bgl.

| Bore<br>Number | Bore Name                               | Purpose       | Drilled Depth<br>(m,bgl) | Water Level<br>(m,bgl) |
|----------------|-----------------------------------------|---------------|--------------------------|------------------------|
| RN012065       | Monitoring Bore – Yulara<br>Airport     | Monitoring    | 37.5                     | 12.3                   |
| RN012074       |                                         | Investigation | 39                       | 14.8                   |
| RN012075       |                                         | Investigation | 54                       | 12.9                   |
| RN012076       |                                         | Investigation | 37.5                     | 12.6                   |
| RN012081       | Monitoring Bore – Yulara<br>Dune Plains | Monitoring    | 93                       | 14.6                   |
| RN012082       |                                         | Investigation | 53                       | 0                      |
| RN012163       | Replacement for RN012082                | Investigation | 63                       | 14.2                   |

## Table 2-1 Bores within 2-km of Yulara Airport (from NR Maps Water PortalDatabase)

### 2.3 Preliminary groundwater sensitivity assessment

The municipal potable-water supply to the Yulara Township is provided from a bore-field located approximately 9.5 km southwest of the Site, operated by Power Water Corporation. The location of this bore-field relative to the airport is shown in Figure 1, Appendix A.

Other regional features or activities with a potential to impact the local groundwater environment are also shown in Figure 1 and include the Yulara Wastewater treatment plant and the Yulara landfill.

The Australian Government Bureau of Meteorology (2019) provides mapping of Groundwater Dependent Ecosystems (GDE). For the Northern Territory, the mapping includes ecosystems that rely on the surface expression of groundwater such as rivers, wetlands and springs (aquatic ecosystems) and those that rely on subsurface groundwater including vegetation (terrestrial ecosystems). A search of the mapping database has indicated that no GDE, aquatic or terrestrial, lie within a 10 km radius of the Site.

## 3. Field investigations

### 3.1 Site observations

RN12065 is located approximately 340 m northeast of the former Fire Fighting Training Grounds, which contain a mock aircraft body on a concrete pad. The immediate surrounding areas are cleared and are not paved.

### 3.2 Methodology and results

RN012065 was gauged on 19 June 2019 using an oil/water interface probe to determine the depth to groundwater, the potential presence of light non-aqueous phase liquid and the total depth of the well. Calibration certificates are presented in Appendix B.

A HDPE HYDRASleeve was deployed using 'bailer-twine' composed of nylon fibres and was positioned near the mid-point of the well screen, at a depth of 25 m,bgl. The HYDRASleeve was recovered on 20 June 2019 and groundwater was sampled. The HDPE and nylon sampling materials used during the project, were selected to ensure no cross-contamination of PFAS from sampling materials/equipment.

Sampling was performed in accordance with GHD SOP 1 Groundwater Well Sampling and QA/QC procedures. Samples were placed on ice and dispatched to the nominated NATA accredited laboratory (ALS) Field-measured physico-chemical parameters are shown in Table 3-1. The sample was noted as being clear, but contained small dark-coloured organic fragments and a slight organic matter odour.

| Well ID | SWL<br>(m bgl) | Depth<br>(m bgl) | EC<br>(µS/cm) | Temp<br>(oC) | рН   | DO<br>%Sat | DO<br>(mg/L) | Eh<br>(mV) |
|---------|----------------|------------------|---------------|--------------|------|------------|--------------|------------|
| RN12065 | 9.882          | 34.40            | 2563          | 25.5         | 8.34 | 22.6       | 1.75         | -122.6     |

#### Table 3-1 Field water quality parameters

## 4. Analytical results

## 4.1 Quality assurance / quality control

One blind replicate sample was collected. The repeatability and precision of analytical results can be evaluated via the relative percentage difference (RPD) between a primary sample result (Co) and the field duplicate sample result (Cd), with the RPD calculated as follows:

$$RPD(\%) = \frac{\left|C_{o} - C_{d}\right|}{C_{o} + C_{d}} \times 200$$

 Where
 Co =
 Analyte concentration of the original sample

 Cd =
 Analyte concentration of the duplicate sample

An acceptance criteria of 30% relative percent difference (RPD) is adopted for field duplicates.

The results of the duplicate sample (QC01) collected are presented in comparison to the results of RN012065 in Table R 1 attached to the end of this report. Relative percentage differences between the primary and duplicate samples are within acceptable limits and provide some evidence of the reliability of the reported concentrations and in terms of the accuracy, precision and repeatability of the sampling and analytical procedures employed.

### 4.2 **PFAS** concentrations

Groundwater sampled from RN012065 contained low level PFAS concentrations, as shown in Table R 1 attached, with similar concentrations detected in the primary and duplicate samples. Original laboratory documents are presented in Appendix C. The 'Sum of PFAS' concentration reported was  $0.155 - 0.167 \mu g/L$  between the two samples.

The analytical results in Table R 1 are compared to generic Tier 1 water quality assessment criteria. Those groundwater assessment criteria are adopted from:

Heads of EPAs of Australia and New Zealand. 2018. PFAS National Environment Management Plan

- Aquatic Ecosystem freshwater guideline value: 95% Freshwater species protection slightly to moderately disturbed systems (Australian and New Zealand Guidelines for Fresh and Marine Water Quality – technical draft default guideline values)
- Health-based guidance values: Drinking Water (Australian Government Department of Health, 2017)

Given the regional site setting, these guidelines are considered highly conservative for assessing health or environmental risks posed by PFAS at this location. Shallow groundwater is not suitable for sensitive beneficial uses and due to the depth of groundwater regionally, no plausible exposure scenarios are presently posed in terms of groundwater risk to human health or (groundwater dependent) ecological receptors.

## 4.3 Conclusion

Groundwater is understood to regionally flow to the north. However, as discussed in Section 2 recharge can differ considerably on a year-to-year basis and might result in localised groundwater gradient development in response to artificial drawdown and/or recharge.

Other sources of PFAS impact in the Yulara region may include the Yulara Fire Station (213 Yulara Drive), the Yulara Waste Water Treatment Plant and the Yulara Landfill. These facilities are all located greater than 5 km south of the airport. Although not the responsibility of ASA, a more holistic assessment of potentially cumulative PFAS impacts to groundwater within the Yulara region may be warranted, given the semi-arid regional setting and the correspondingly higher importance of maintaining a dependable groundwater resource.

Table R 1 Groundwater analytical results



|                                                           |      |       |                                  | Field ID                                | QC01                          | RN12065                       |                          |
|-----------------------------------------------------------|------|-------|----------------------------------|-----------------------------------------|-------------------------------|-------------------------------|--------------------------|
|                                                           |      |       |                                  | Date                                    | 20/06/2019                    | 20/06/2019                    | Relative                 |
|                                                           |      |       |                                  | Lab Report No.                          | ES1919430<br>20/06/2019 14:30 | ES1919430<br>20/06/2019 14:30 | Percentage<br>Difference |
|                                                           |      |       |                                  | Sample Type                             | Field_D                       | Normal                        |                          |
|                                                           | Unit | EQL   | PFAS NEMP 2018<br>Freshwater 95% | PFAS NEMP 2018<br>Health Drinking Water |                               |                               |                          |
| Perfluorobutane sulfonic acid (PFBS)                      | µg/L | 0.002 |                                  |                                         | 0.016                         | 0.021                         | 27                       |
| Perfluoropentane sulfonic acid (PFPeS)                    | µg/L | 0.002 |                                  |                                         | 0.003                         | 0.003                         | 0                        |
| Perfluorohexane sulfonic acid (PFHxS)                     | µg/L | 0.002 |                                  |                                         | 0.011                         | 0.012                         | 9                        |
| Perfluoroheptane sulfonic acid (PFHpS)                    | µg/L | 0.002 |                                  |                                         | <0.002                        | <0.002                        | 0                        |
| Perfluorooctane sulfonic acid (PFOS)                      | µg/L | 0.002 | 0.13                             | 0.07                                    | 0.032                         | 0.036                         | 12                       |
| Perfluorodecanesulfonic acid (PFDS)                       | µg/L | 0.002 |                                  |                                         | <0.002                        | <0.002                        | 0                        |
| Perfluoro-n-hexadecanoic acid (PFHxDA)                    | µg/L | 0.005 |                                  |                                         | <0.005                        | <0.005                        | 0                        |
| Perfluorobutanoic acid (PFBA)                             | µg/L | 0.01  |                                  |                                         | <0.01                         | <0.01                         | 0                        |
| Perfluoropentanoic acid (PFPeA)                           | µg/L | 0.002 |                                  |                                         | 0.009                         | 0.007                         | 25                       |
| Perfluorohexanoic acid (PFHxA)                            | µg/L | 0.002 |                                  |                                         | 0.044                         | 0.048                         | 9                        |
| Perfluoroheptanoic acid (PFHpA)                           | µg/L | 0.002 |                                  |                                         | <0.002                        | <0.002                        | 0                        |
| Perfluorooctanoic acid (PFOA)                             | µg/L | 0.002 | 220                              | 0.56                                    | <0.002                        | <0.002                        | 0                        |
| Perfluorononanoic acid (PFNA)                             | µg/L | 0.002 |                                  |                                         | <0.002                        | <0.002                        | 0                        |
| Perfluorodecanoic acid (PFDA)                             | µg/L | 0.002 |                                  |                                         | <0.002                        | <0.002                        | 0                        |
| Perfluoroundecanoic acid (PFUnDA)                         | µg/L | 0.002 |                                  |                                         | <0.002                        | <0.002                        | 0                        |
| Perfluorododecanoic acid (PFDoDA)                         | µg/L | 0.002 |                                  |                                         | <0.002                        | <0.002                        | 0                        |
| Perfluorotridecanoic acid (PFTrDA)                        | µg/L | 0.002 |                                  |                                         | <0.002                        | <0.002                        | 0                        |
| Perfluorotetradecanoic acid (PFTeDA)                      | µg/L | 0.005 |                                  |                                         | <0.005                        | <0.005                        | 0                        |
| Perfluorooctane sulfonamide (FOSA)                        | µg/L | 0.002 |                                  |                                         | <0.002                        | <0.002                        | 0                        |
| N-Methyl perfluorooctane sulfonamide (MeFOSA)             | µg/L | 0.005 |                                  |                                         | <0.005                        | <0.005                        | 0                        |
| N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | µg/L | 0.005 |                                  |                                         | <0.005                        | <0.005                        | 0                        |
| N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | µg/L | 0.005 |                                  |                                         | <0.005                        | <0.005                        | 0                        |
| N-Methyl perfluorooctane sulfonamidoethanol (MEFOSE)      | µg/L | 0.005 |                                  |                                         | <0.005                        | <0.005                        | 0                        |
| N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | µg/L | 0.002 |                                  |                                         | <0.002                        | <0.002                        | 0                        |
| N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | µg/L | 0.002 |                                  |                                         | <0.002                        | <0.002                        | 0                        |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                 | µg/L | 0.005 |                                  |                                         | <0.005                        | <0.005                        | 0                        |
| 6:2 Fluorotelomer Sulfonate (6:2 FTS)                     | µg/L | 0.005 |                                  |                                         | 0.040                         | 0.040                         | 0                        |
| 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                 | µg/L | 0.005 |                                  |                                         | <0.005                        | <0.005                        | 0                        |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)               | µg/L | 0.005 |                                  |                                         | <0.005                        | <0.005                        | 0                        |
| PFAS (Sum of Total)                                       | µg/L | 0.002 |                                  |                                         | 0.155                         | 0.167                         | 7                        |
| Sum of PFHxS and PFOS                                     | µg/L | 0.002 | 0.13                             | 0.07                                    | 0.043                         | 0.048                         | 11                       |
| PFAS (Sum of Total)(WA DER List)                          | µg/L | 0.002 |                                  |                                         | 0.152                         | 0.164                         | 8                        |

#### Environmental Standards

HEPA, January 2018, PFAS NEMP 2018 Freshwater 95%

HEPA, January 2018, PFAS NEMP 2018 Health Drinking Water

1

## Appendices

## Appendix A – Figures





N:\AU\Brisbane\Projects\41\32561\GIS\Waps\MXD\4132561\_001\_YularaSiteLocation.mxd Print date: 03 Jul 2019 - 16:29



#### Data Disclaimer

©2019. Whilst every care has been taken to prepare this map, GHD makes no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind whether in contract, tor or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason.





Airservices Australia Yulara Airport Groundwater Sampling (June 2019)

Project No. 43-32561 Revision No. 0 Date 3/07/2019

FIGURE 2

N:VAU \Brisbane\Projects\41\32561\GIS\Maps\MXD\4132561\_002\_YularaSiteLayout.mxd Print date: 03 Jul 2019 - 16:34

SITE LAYOUT Data source: GA - Roads, Places, Rail (2015); GHD - Yulara Aiport (2019); NTLIS: Groundwater Well (2015); Google Earth: Imagery (captured 18/06/2018, downloaded 03/07/2019). Created by: xlee Appendix B – Calibration certificates

#### Oil / Water Interface Meter

Instrument Interface Meter (60M) Serial No. 312446



Air-Met Scientific Pty Ltd 1300 137 067

| ltem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test             | Pass         | Comments |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|----------|
| Battery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Compartment      | 1            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Capacity         | 1            | 8.3 V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |              |          |
| Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cleaned/Decon.   | 1            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Operation        | 1            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |              |          |
| Connectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Condition        | $\checkmark$ |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 1            |          |
| Tape Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cleaned          | √            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Checked for cuts | 1            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |              |          |
| Instrument Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | At surface level | 1            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |              |          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |              |          |
| Second and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |              |          |
| N CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | ik a         |          |
| and the second sec |                  | 1            | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |              | ,        |

## Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by:

James Draper

Calibration date:

6/06/2019

Next calibration due:

5/08/2019

Instrument Y Serial No. 19

YSI Pro DSS 19D100844



## Air-Met Scientific Pty Ltd 1300 137 067

| Item          | Test             | Pass | Comments |
|---------------|------------------|------|----------|
| Battery       | Charge Condition | ✓    |          |
|               | Fuses            | ✓    |          |
|               | Capacity         | ✓    |          |
|               | Recharge OK?     | ✓    |          |
| Switch/keypad | Operation        | ✓    |          |
| Display       | Intensity        | ✓    |          |
|               | Operation        | ✓    |          |
|               | (segments)       |      |          |
| Grill Filter  | Condition        | ✓    |          |
|               | Seal             | ✓    |          |
| РСВ           | Condition        | ✓    |          |
| Connectors    | Condition        | ✓    |          |
| Sensor        | 1. pH/ORP        | ✓    |          |
|               | 2. Turbidity     | ✓    |          |
|               | 3. Conductivity  | ✓    |          |
|               | 4. D.O           | ✓    |          |
|               | 5. Temp          | ✓    |          |
|               | 6. Depth         | x    |          |
| Alarms        | Beeper           |      |          |
|               | Settings         |      |          |
| Software      | Version          |      |          |
| Data logger   | Operation        |      |          |
| Download      | Operation        |      |          |
| Other tests:  |                  |      |          |

## Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

| Sensor      | Serial no | Standard Solutions | Certified | Solution Bottle | Instrument Reading |
|-------------|-----------|--------------------|-----------|-----------------|--------------------|
|             |           |                    |           | Number          |                    |
| 1. EC       |           | 2.76mS             |           | 322349          | 2.75mS             |
| 2. Temp     |           | 17.5               |           |                 | 18.0C              |
| 3. pH 4     |           | pH 4.00            |           | 324985          | pH 4.14            |
| 4. pH 7     |           | pH 7.00            |           | 330737          | pH 7.00            |
| 6. DO       |           | 0.0ppm             |           | 329994          | 0.0ppm             |
| 7. mV       |           | 231.8mV            |           | 324355/325421   | 231.8mV            |
| 8.Tubidity  |           | ONTU               |           | N/A             | 0.1NTU             |
| 9.Tubidity  |           | 100NTU             |           | 332244          | 100.3NTU           |
| 10.Tubidity |           | 1000NTU            |           | 17L801628       | 9986NTU            |

Calibrated by:

James Draper

Calibration date: 11/06/2019

Next calibration due: 11/07/2019

Appendix C – Laboratory documentation

| ALS                                                 | CHAIN OF CUSTODY<br>ALS Laboratory: please tick →                                             | DADELAIDE 21 Burma Ro<br>Ph: 08 8359 0890 E: adela<br>DBRISBANE 2 Byth Street<br>Ph: 07 3243 7222 E; sampt<br>DCI 405104 & Callera | oad Pooraka SA 5<br>ide@atsglobal.co<br>Stafford QLD 405<br>es.brisbane@atsg | 095 P<br>n P<br>3 C<br>10bal.com P<br>n D D 4650 L                                                          | IMACKAY 78 F<br>h: 07 4944 017<br>MELBOURNÉ<br>h: 03 8549 960<br>IUDGEE 1/29 S | Harbour Road Mack<br>77 E: mackay@alsgl<br>2-4 Weptall Road S,<br>6 E. samples.metbo<br>Sydney Road Mudda | ay QLD 4740<br>obal.com<br>pringvate VIC 0<br>urne@atsglobr<br>re NSW 2850 | 3171<br>al.com | DNEWCA<br>Ph: 02 40<br>DNOWRA 4<br>Ph: 02 4423<br>DPERTH 10 | STLE 5/585 Ma<br> 4 2500 E: samp<br>/13 Geary Place<br>2063 E: nowrag<br>) Kod Way Maia | fland Road Mayfi<br>eles.newcastře@a<br>e North Nowra NS<br>⊇aisglobal.com<br>ga_WA 6090 | eld West NSW 2<br>Isglobal.com<br>W 2541 | 304 EISYDNEY 277-<br>Ph: 02 8784 855<br>CTOWNSVILLE 14<br>Ph: 07 4796 0600 8<br>EIWOLLONGONG | 289 Woodpark Road Smithfield NSW 2164<br>5 E: samples syönsy@alsglobal.com<br>1-15 Desma Court Bohle OLD 4818<br>E: lownesville entrionmenta@alsglobal.com<br>99 Kenny Street Wollongong NSW 2500 |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     |                                                                                               | Ph: 07 7471 5600 E: gladst                                                                                                         | one@alsglobal.co                                                             | m Ph                                                                                                        | 02 6372 6735                                                                   | E mudgee.mail@al                                                                                          | sglobal.com                                                                | <u> </u>       | Ph: 08 9209                                                 | 7655 E: sample                                                                          | s.perth@alsgloba                                                                         | d com                                    | Ph: 02 4225 3125                                                                             | E: wollongong@alsglobal.com                                                                                                                                                                       |
| CLIENT: GHD                                         |                                                                                               |                                                                                                                                    | TURNAR                                                                       | OUND REQUIREMENTS :<br>AT may be longer for some tests                                                      | Stan                                                                           | ndard TAT (List                                                                                           | due date):                                                                 |                |                                                             |                                                                                         |                                                                                          | Custo                                    | dy Seal Intact?                                                                              |                                                                                                                                                                                                   |
| OFFICE: Darwin                                      |                                                                                               | ••                                                                                                                                 | e.g., Ultra T                                                                | race Organics)                                                                                              | LI Non                                                                         | Standard or urg                                                                                           | jent IAI (L                                                                | ist due c      | COC SED                                                     |                                                                                         | BER (Circle)                                                                             | Free                                     | e / frozen ice bricks                                                                        | present upon Yes No N                                                                                                                                                                             |
| PROJECT: 413256100                                  |                                                                                               | PROJECT NO.:                                                                                                                       | ALS QUU                                                                      |                                                                                                             |                                                                                |                                                                                                           |                                                                            |                |                                                             | 3 4                                                                                     | 5 6                                                                                      | 7 Rand                                   | ot?<br>om Sample Temperat                                                                    | ure on Receipt: 12-2 °C                                                                                                                                                                           |
| DRDER NUMBER:                                       | PURCHASE                                                                                      | ORDER NO.:                                                                                                                         | COUNTR                                                                       |                                                                                                             |                                                                                |                                                                                                           |                                                                            |                |                                                             | 34                                                                                      | 5 6                                                                                      | 7 Other                                  | comment:                                                                                     | (45                                                                                                                                                                                               |
| ROJECT MANAGER:                                     | : Kiara Crook                                                                                 | CONTACT                                                                                                                            | NODILE: 04                                                                   | 07 078 158                                                                                                  |                                                                                | UISHED BY: /                                                                                              |                                                                            | F              | ECEIVED BY                                                  | Sha                                                                                     | hila                                                                                     | RELINQUI                                 | SHED BY:                                                                                     | RECEIVED BY:                                                                                                                                                                                      |
| SAMPLER: Nara Croo                                  |                                                                                               | EDD EOD                                                                                                                            |                                                                              | ult).                                                                                                       | Kigro                                                                          | crust                                                                                                     | Lou Con                                                                    |                |                                                             |                                                                                         | <i>u</i> (9                                                                              |                                          |                                                                                              |                                                                                                                                                                                                   |
| DC Emailed to ALS /                                 | default to PM if no other addresses are li                                                    | sted): kiara crock@cbd.co                                                                                                          |                                                                              |                                                                                                             | DATE/TI                                                                        | ינטוו קט<br>ME:                                                                                           | 100000                                                                     | C              |                                                             | 21/06                                                                                   | 12019                                                                                    | DATE/TIM                                 | E:                                                                                           | DATE/TIME:                                                                                                                                                                                        |
| mail reports to (will de                            | lofault to PM if no other addresses are in                                                    | ted): kiara crook@ghd.co                                                                                                           | n                                                                            |                                                                                                             | 20/6                                                                           | liq                                                                                                       | 0800                                                                       | 2              |                                                             | 10'0                                                                                    | SAM                                                                                      |                                          |                                                                                              |                                                                                                                                                                                                   |
| COMMENTS/SPECIAL                                    |                                                                                               | -:                                                                                                                                 | ···                                                                          |                                                                                                             | <u> </u>                                                                       | <u> </u>                                                                                                  |                                                                            | I              | <u> </u>                                                    |                                                                                         |                                                                                          | L                                        |                                                                                              |                                                                                                                                                                                                   |
|                                                     |                                                                                               |                                                                                                                                    |                                                                              |                                                                                                             |                                                                                |                                                                                                           |                                                                            | SIS REO        | LIIRED includ                                               | ing SUITES                                                                              | /NB_Suite Co                                                                             | les must he li                           | sted to attract suite pr                                                                     | ice)                                                                                                                                                                                              |
| ALS USE ONLY                                        | SAMPLE<br>MATRIX: Soli                                                                        | DETAILS<br>d(S) Water(W)                                                                                                           |                                                                              | CONTAINER INF                                                                                               | ORMATIO                                                                        | N                                                                                                         | Where                                                                      | Metals are     | required, specify T                                         | iotal (unfiltered                                                                       | bottle required) or                                                                      | Dissolved (fiel                          | d filtered bottle required).                                                                 | Additional Information                                                                                                                                                                            |
| , LABID                                             | SAMPLE ID                                                                                     | DATE / TIME                                                                                                                        | MATRIX                                                                       | TYPE & PRESERVA<br>(refer to codes beio                                                                     | TIVE<br>bw)                                                                    | TOTAL<br>BOTTLES                                                                                          | EP231X-LL                                                                  |                |                                                             |                                                                                         |                                                                                          |                                          |                                                                                              | Comments on likely contaminant levels,<br>dilutions, or samples requiring specific QC<br>analysis etc.                                                                                            |
| 1                                                   | RN12065                                                                                       | 20/06/19                                                                                                                           |                                                                              | pros                                                                                                        |                                                                                | 1                                                                                                         | <u> </u>                                                                   |                |                                                             |                                                                                         | _                                                                                        |                                          |                                                                                              |                                                                                                                                                                                                   |
| 2                                                   | QCOI                                                                                          | 20/06/19                                                                                                                           | N                                                                            | PFAS                                                                                                        |                                                                                |                                                                                                           | <u> </u>                                                                   | ļ              |                                                             |                                                                                         |                                                                                          | :<br>                                    |                                                                                              |                                                                                                                                                                                                   |
|                                                     |                                                                                               |                                                                                                                                    |                                                                              |                                                                                                             |                                                                                |                                                                                                           |                                                                            |                |                                                             |                                                                                         |                                                                                          |                                          |                                                                                              |                                                                                                                                                                                                   |
|                                                     |                                                                                               | Environment<br>Sydney<br>Work Order<br>ES19                                                                                        | Reference<br><b>194</b> 3                                                    | o1                                                                                                          |                                                                                |                                                                                                           |                                                                            |                |                                                             |                                                                                         |                                                                                          |                                          |                                                                                              |                                                                                                                                                                                                   |
|                                                     |                                                                                               |                                                                                                                                    |                                                                              |                                                                                                             |                                                                                |                                                                                                           |                                                                            |                |                                                             |                                                                                         |                                                                                          |                                          |                                                                                              |                                                                                                                                                                                                   |
|                                                     |                                                                                               | Telephone : + 61-2                                                                                                                 | -8784 8555                                                                   | )                                                                                                           |                                                                                |                                                                                                           |                                                                            |                |                                                             |                                                                                         |                                                                                          |                                          |                                                                                              | · · · ·                                                                                                                                                                                           |
| <u></u>                                             |                                                                                               | · · · · · · · · · · · · · · · · · · ·                                                                                              |                                                                              | <u> </u>                                                                                                    | тоти                                                                           | AL                                                                                                        |                                                                            |                |                                                             |                                                                                         |                                                                                          |                                          |                                                                                              |                                                                                                                                                                                                   |
| Vater Container Codes:<br>/ = VOA Vial HCI Preserve | P = Unpreserved Plastic; N = Nitric Preserved<br>ed; VB = VOA Vial Sodium Bisulphate Preserve | Plastic; ORC = Nitric Presen<br>ed; VS = VOA Vial Sulfuric Pres                                                                    | ved ORC; SH =<br>served; AV = Ai                                             | Sodium Hydroxide/Cd Preserved;<br>freight Unpreserved Vial SG = Sui<br>to Solie: B = Lingreserved Bas: Li = | S = Sodium                                                                     | Hydroxide Prese<br>ved Amber Glass                                                                        | rved Plastic;<br>; H = HCl p<br>tes; STT = S                               | AG = Arr       | ber Glass Unpre<br>Plastic; HS = H0<br>ium Thiosulfate P    | served; AP - /<br>Cl preserved S<br>Preserved Bot                                       | Airfreight Unpre<br>peciation bottle                                                     | served Plastie<br>; SP = Sulfuri         | c Preserved Plastic, 1                                                                       | F = Formaldehγde Preserved Glass;                                                                                                                                                                 |

,



## SAMPLE RECEIPT NOTIFICATION (SRN)

| Work Order                                                                                                                       | : ES1919430                                                                                                                                         |                                  |                                                                                                                                         |                                                 |  |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--|
| Client<br>Contact<br>Address                                                                                                     | Client       : GHD PTY LTD         Contact       : MS KIARA CROOK         \ddress       : LEVEL 5 66 SMITH STREET         DARWIN NT, AUSTRALIA 0800 |                                  | <ul> <li>Environmental Division Sydney</li> <li>Andrew Epps</li> <li>277-289 Woodpark Road Smithfield<br/>NSW Australia 2164</li> </ul> |                                                 |  |
| E-mail         : kiara.crook@ghd.com           Telephone         : +61 08 89820151           Facsimile         : +61 08 89821075 |                                                                                                                                                     | E-mail<br>Telephone<br>Facsimile | : andrev<br>: +61 7<br>: +61-2-                                                                                                         | w.epps@alsglobal.com<br>3552 8639<br>-8784 8500 |  |
| Project<br>Order number<br>C-O-C number<br>Site<br>Sampler                                                                       | bject : 413256100<br>der number :<br>O-C number :<br>e :<br>mpler : KIARA CROOK                                                                     |                                  | : 1 of 2<br>: ES2018GHDSER0025 (EN/005/18)<br>: NEPM 2013 B3 & ALS QC Standard                                                          |                                                 |  |
| Dates<br>Date Samples Receiv<br>Client Requested Due<br>Date                                                                     | ed : 21-Jun-2019 09:40<br>: 28-Jun-2019                                                                                                             | Issue Date<br>Scheduled Reporti  | ng Date                                                                                                                                 | : 24-Jun-2019<br>: <b>28-Jun-2019</b>           |  |
| Delivery Detail<br>Mode of Delivery<br>No. of coolers/boxes                                                                      | S<br>: Undefined<br>: 1                                                                                                                             | Security Seal<br>Temperature     |                                                                                                                                         | : Not Available<br>: 17.3'c - Ice present       |  |

No. of samples received / analysed

: 2/2

#### **General Comments**

Receipt Detail

- This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances
  - Summary of Sample(s) and Requested Analysis
  - Proactive Holding Time Report
  - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of
  recommended holding times that have occurred prior to samples/instructions being received at
  the laboratory. The absence of this summary table indicates that all samples have been received
  within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
  analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
  temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
  recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.



#### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

#### Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time EP231X-LL component

#### Matrix: WATER

| is provided, the<br>laboratory and<br>component | sampling date wi<br>displayed in bra | ll be assumed by ckets without a | time 100 The 1 |
|-------------------------------------------------|--------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Matrix: WATER                                   | Client sampling<br>date / time       | Client sample ID                 | WATER - EP2:<br>PFAS - Full Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ES1919430-001                                   | 20-Jun-2019 00:00                    | RN12065                          | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ES1919430-002                                   | 20-Jun-2019 00:00                    | QC01                             | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

#### Requested Deliverables

| ACCOUNTS PAYABLE (Hobart)                                                     |       |                           |
|-------------------------------------------------------------------------------|-------|---------------------------|
| - A4 - AU Tax Invoice (INV)                                                   | Email | ap-fss@ghd.com            |
| Accounts Payable Australia                                                    |       |                           |
| - A4 - AU Tax Invoice (INV)                                                   | Email | accountspayableAU@ghd.com |
| GHD LAB REPORTS                                                               |       |                           |
| <ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>                  | Email | ghdlabreports@ghd.com     |
| <ul> <li>*AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)</li> </ul> | Email | ghdlabreports@ghd.com     |
| <ul> <li>*AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)</li> </ul>         | Email | ghdlabreports@ghd.com     |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN)                | Email | ghdlabreports@ghd.com     |
| - EDI Format - ESDAT (ESDAT)                                                  | Email | ghdlabreports@ghd.com     |
| <ul> <li>Electronic SRN for ESdat (ESRN_ESDAT)</li> </ul>                     | Email | ghdlabreports@ghd.com     |
| KIARA CROOK                                                                   |       |                           |
| <ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>                  | Email | kiara.crook@ghd.com       |
| <ul> <li>*AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)</li> </ul> | Email | kiara.crook@ghd.com       |
| <ul> <li>*AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)</li> </ul>         | Email | kiara.crook@ghd.com       |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN)                | Email | kiara.crook@ghd.com       |
| - A4 - AU Tax Invoice (INV)                                                   | Email | kiara.crook@ghd.com       |
| - Chain of Custody (CoC) (COC)                                                | Email | kiara.crook@ghd.com       |
| - EDI Format - ENMRG (ENMRG)                                                  | Email | kiara.crook@ghd.com       |
| - EDI Format - ESDAT (ESDAT)                                                  | Email | kiara.crook@ghd.com       |
| <ul> <li>Electronic SRN for ESdat (ESRN_ESDAT)</li> </ul>                     | Email | kiara.crook@ghd.com       |

(29 analytes)



## **CERTIFICATE OF ANALYSIS**

| Work Order              | ES1919430                 | Page                    | : 1 of 5                                              |
|-------------------------|---------------------------|-------------------------|-------------------------------------------------------|
| Client                  | : GHD PTY LTD             | Laboratory              | Environmental Division Sydney                         |
| Contact                 | : MS KIARA CROOK          | Contact                 | Andrew Epps                                           |
| Address                 | ELVEL 5 66 SMITH STREET   | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
|                         | DARWIN NT, AUSTRALIA 0800 |                         |                                                       |
| Telephone               | : +61 08 89820151         | Telephone               | : +61 7 3552 8639                                     |
| Project                 | : 413256100               | Date Samples Received   | : 21-Jun-2019 09:40                                   |
| Order number            | :                         | Date Analysis Commenced | : 25-Jun-2019                                         |
| C-O-C number            | :                         | Issue Date              | : 28-Jun-2019 11:07                                   |
| Sampler                 | : KIARA CROOK             |                         | HALA NAIA                                             |
| Site                    | :                         |                         |                                                       |
| Quote number            | : EN/005/18               |                         |                                                       |
| No. of samples received | : 2                       |                         | Accredited for compliance with                        |
| No. of samples analysed | : 2                       |                         | ISO/IEC 17025 - Testing                               |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

Position

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories

Franco Lentini

Accreditation Category

Sydney Organics, Smithfield, NSW

| Page       | : 2 of 5      |
|------------|---------------|
| Work Order | : ES1919430   |
| Client     | : GHD PTY LTD |
| Project    | 413256100     |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

| Page       | : 3 of 5      |
|------------|---------------|
| Work Order | ES1919430     |
| Client     | : GHD PTY LTD |
| Project    | : 413256100   |



## Analytical Results

| Sub-Matrix: WATER<br>(Matrix: WATER)     |            | Clie         | ent sample ID  | RN12065           | QC01              |   |  |   |  |  |
|------------------------------------------|------------|--------------|----------------|-------------------|-------------------|---|--|---|--|--|
|                                          | Cl         | ient sampliı | ng date / time | 20-Jun-2019 00:00 | 20-Jun-2019 00:00 |   |  |   |  |  |
| Compound                                 | CAS Number | LOR          | Unit           | ES1919430-001     | ES1919430-002     |   |  |   |  |  |
|                                          |            |              |                | Result            | Result            |   |  |   |  |  |
| EP231A: Perfluoroalkyl Sulfonic Acids    |            |              |                |                   |                   |   |  |   |  |  |
| Perfluorobutane sulfonic acid            | 375-73-5   | 0.002        | µg/L           | 0.021             | 0.016             |   |  |   |  |  |
| (PFBS)                                   |            |              |                |                   |                   |   |  |   |  |  |
| Perfluoropentane sulfonic acid           | 2706-91-4  | 0.002        | µg/L           | 0.003             | 0.003             |   |  |   |  |  |
| (PFPeS)                                  |            |              |                |                   |                   |   |  |   |  |  |
| Perfluorohexane sulfonic acid<br>(PFHxS) | 355-46-4   | 0.002        | µg/L           | 0.012             | 0.011             |   |  |   |  |  |
| Perfluoroheptane sulfonic acid           | 375-92-8   | 0.002        | µg/L           | <0.002            | <0.002            |   |  |   |  |  |
| (PFHpS)                                  |            |              |                |                   |                   |   |  |   |  |  |
| Perfluorooctane sulfonic acid            | 1763-23-1  | 0.002        | µg/L           | 0.036             | 0.032             |   |  |   |  |  |
| (PFOS)                                   |            |              |                |                   |                   |   |  |   |  |  |
| Perfluorodecane sulfonic acid            | 335-77-3   | 0.002        | µg/L           | <0.002            | <0.002            |   |  |   |  |  |
| (PFDS)                                   |            |              |                |                   |                   |   |  |   |  |  |
| EP231B: Perfluoroalkyl Carboxylic Ac     | ids        |              |                |                   |                   |   |  |   |  |  |
| Perfluorobutanoic acid (PFBA)            | 375-22-4   | 0.01         | µg/L           | <0.01             | <0.01             |   |  |   |  |  |
| Perfluoropentanoic acid (PFPeA)          | 2706-90-3  | 0.002        | µg/L           | 0.007             | 0.009             |   |  |   |  |  |
| Perfluorohexanoic acid (PFHxA)           | 307-24-4   | 0.002        | µg/L           | 0.048             | 0.044             |   |  |   |  |  |
| Perfluoroheptanoic acid (PFHpA)          | 375-85-9   | 0.002        | µg/L           | <0.002            | <0.002            |   |  |   |  |  |
| Perfluorooctanoic acid (PFOA)            | 335-67-1   | 0.002        | µg/L           | <0.002            | <0.002            |   |  |   |  |  |
| Perfluorononanoic acid (PFNA)            | 375-95-1   | 0.002        | µg/L           | <0.002            | <0.002            |   |  |   |  |  |
| Perfluorodecanoic acid (PFDA)            | 335-76-2   | 0.002        | µg/L           | <0.002            | <0.002            |   |  |   |  |  |
| Perfluoroundecanoic acid                 | 2058-94-8  | 0.002        | µg/L           | <0.002            | <0.002            |   |  |   |  |  |
| (PFUnDA)                                 |            |              |                |                   |                   |   |  |   |  |  |
| Perfluorododecanoic acid<br>(PFDoDA)     | 307-55-1   | 0.002        | µg/L           | <0.002            | <0.002            |   |  |   |  |  |
| Perfluorotridecanoic acid<br>(PFTrDA)    | 72629-94-8 | 0.002        | µg/L           | <0.002            | <0.002            |   |  |   |  |  |
| Perfluorotetradecanoic acid<br>(PFTeDA)  | 376-06-7   | 0.005        | µg/L           | <0.005            | <0.005            |   |  |   |  |  |
| Perfluorohexadecanoic acid               | 67905-19-5 | 0.005        | µg/L           | <0.005            | <0.005            |   |  |   |  |  |
| (PFHxDA)                                 |            |              |                |                   |                   |   |  |   |  |  |
| EP231C: Perfluoroalkyl Sulfonamides      |            |              |                |                   |                   |   |  |   |  |  |
| Perfluorooctane sulfonamide              | 754-91-6   | 0.002        | µg/L           | <0.002            | <0.002            |   |  |   |  |  |
| (FOSA)                                   |            |              |                |                   |                   |   |  |   |  |  |
| N-Methyl perfluorooctane                 | 31506-32-8 | 0.005        | µg/L           | <0.005            | <0.005            |   |  |   |  |  |
|                                          |            |              |                |                   | 1                 | I |  | 1 |  |  |

| Page       | : 4 of 5      |
|------------|---------------|
| Work Order | : ES1919430   |
| Client     | : GHD PTY LTD |
| Project    | : 413256100   |



## Analytical Results

| Sub-Matrix: WATER<br>(Matrix: WATER)                            |                        | Clie         | ent sample ID  | RN12065           | QC01              | <br> |  |
|-----------------------------------------------------------------|------------------------|--------------|----------------|-------------------|-------------------|------|--|
|                                                                 | Cl                     | ient samplii | ng date / time | 20-Jun-2019 00:00 | 20-Jun-2019 00:00 | <br> |  |
| Compound                                                        | CAS Number             | LOR          | Unit           | ES1919430-001     | ES1919430-002     | <br> |  |
|                                                                 |                        |              |                | Result            | Result            | <br> |  |
| EP231C: Perfluoroalkyl Sulfonamide                              | es - Continued         |              |                |                   |                   |      |  |
| N-Ethyl perfluorooctane<br>sulfonamide (EtFOSA)                 | 4151-50-2              | 0.005        | µg/L           | <0.005            | <0.005            | <br> |  |
| N-Methyl perfluorooctane<br>sulfonamidoethanol (MeFOSE)         | 24448-09-7             | 0.005        | µg/L           | <0.005            | <0.005            | <br> |  |
| N-Ethyl perfluorooctane<br>sulfonamidoethanol (EtFOSE)          | 1691-99-2              | 0.005        | µg/L           | <0.005            | <0.005            | <br> |  |
| N-Methyl perfluorooctane<br>sulfonamidoacetic acid<br>(MeFOSAA) | 2355-31-9              | 0.002        | µg/L           | <0.002            | <0.002            | <br> |  |
| N-Ethyl perfluorooctane<br>sulfonamidoacetic acid<br>(EtFOSAA)  | 2991-50-6              | 0.002        | µg/L           | <0.002            | <0.002            | <br> |  |
| EP231D: (n:2) Fluorotelomer Sulfon                              | ic Acids               |              |                |                   |                   |      |  |
| 4:2 Fluorotelomer sulfonic acid<br>(4:2 FTS)                    | 757124-72-4            | 0.005        | µg/L           | <0.005            | <0.005            | <br> |  |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS)                    | 27619-97-2             | 0.005        | µg/L           | 0.040             | 0.040             | <br> |  |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS)                    | 39108-34-4             | 0.005        | µg/L           | <0.005            | <0.005            | <br> |  |
| 10:2 Fluorotelomer sulfonic acid<br>(10:2 FTS)                  | 120226-60-0            | 0.005        | µg/L           | <0.005            | <0.005            | <br> |  |
| EP231P: PFAS Sums                                               |                        |              |                |                   |                   |      |  |
| Sum of PFAS                                                     |                        | 0.002        | µg/L           | 0.167             | 0.155             | <br> |  |
| Sum of PFHxS and PFOS                                           | 355-46-4/1763-23-<br>1 | 0.002        | µg/L           | 0.048             | 0.043             | <br> |  |
| Sum of PFAS (WA DER List)                                       |                        | 0.002        | µg/L           | 0.164             | 0.152             | <br> |  |
| EP231S: PFAS Surrogate                                          |                        |              |                |                   |                   |      |  |
| 13C4-PFOS                                                       |                        | 0.002        | %              | 82.7              | 91.9              | <br> |  |
| 13C8-PFOA                                                       |                        | 0.002        | %              | 110               | 109               | <br> |  |

| Page       | 5 of 5        |
|------------|---------------|
| Work Order | : ES1919430   |
| Client     | : GHD PTY LTD |
| Project    | : 413256100   |



## Surrogate Control Limits

| Sub-Matrix: WATER      | Recovery Limits (%) |     |      |  |
|------------------------|---------------------|-----|------|--|
| Compound               | CAS Number          | Low | High |  |
| EP231S: PFAS Surrogate |                     |     |      |  |
| 13C4-PFOS              |                     | 60  | 120  |  |
| 13C8-PFOA              |                     | 60  | 120  |  |



## **QUALITY CONTROL REPORT**

| Work Order              | : ES1919430             | Page                    | : 1 of 7                 |                                  |
|-------------------------|-------------------------|-------------------------|--------------------------|----------------------------------|
| Client                  |                         | Laboratory              | : Environmental Division | Sydney                           |
| Contact                 | : MS KIARA CROOK        | Contact                 | : Andrew Epps            |                                  |
| Address                 | LEVEL 5 66 SMITH STREET | Address                 | : 277-289 Woodpark Roa   | ad Smithfield NSW Australia 2164 |
| Telephone               | : +61 08 89820151       | Telephone               | : +61 7 3552 8639        |                                  |
| Project                 | : 413256100             | Date Samples Received   | : 21-Jun-2019            | SWIIII A                         |
| Order number            | :                       | Date Analysis Commenced | : 25-Jun-2019            |                                  |
| C-O-C number            | :                       | Issue Date              | : 28-Jun-2019            |                                  |
| Sampler                 | : KIARA CROOK           |                         |                          | HAC-MRA NAIA                     |
| Site                    | :                       |                         |                          |                                  |
| Quote number            | : EN/005/18             |                         |                          | Approximation No. 025            |
| No. of samples received | : 2                     |                         |                          | Accredited for compliance with   |
| No. of samples analysed | : 2                     |                         |                          | ISO/IEC 17025 - Testing          |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Position

• Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories

Franco Lentini

Accreditation Category

Sydney Organics, Smithfield, NSW

| Page       | : 2 of 7      |
|------------|---------------|
| Work Order | : ES1919430   |
| Client     | : GHD PTY LTD |
| Project    | : 413256100   |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference
- # = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: WATER                                       |                                                    |                                                      |            |       | Laboratory Duplicate (DUP) Report |                 |                  |          |                     |
|---------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|------------|-------|-----------------------------------|-----------------|------------------|----------|---------------------|
| Laboratory sample ID                                    | Client sample ID                                   | Method: Compound                                     | CAS Number | LOR   | Unit                              | Original Result | Duplicate Result | RPD (%)  | Recovery Limits (%) |
| EP231A: Perfluoroalkyl Sulfonic Acids (QC Lot: 2424635) |                                                    |                                                      |            |       |                                   |                 |                  |          |                     |
| ES1919201-001                                           | Anonymous                                          | EP231X-LL: Perfluorobutane sulfonic acid (PFBS)      | 375-73-5   | 0.002 | μg/L                              | <0.002          | <0.002           | 0.00     | No Limit            |
|                                                         |                                                    | EP231X-LL: Perfluoropentane sulfonic acid<br>(PFPeS) | 2706-91-4  | 0.002 | µg/L                              | <0.002          | <0.002           | 0.00     | No Limit            |
|                                                         |                                                    | EP231X-LL: Perfluorohexane sulfonic acid<br>(PFHxS)  | 355-46-4   | 0.002 | µg/L                              | 0.028           | 0.032            | 10.7     | 0% - 50%            |
|                                                         |                                                    | EP231X-LL: Perfluoroheptane sulfonic acid<br>(PFHpS) | 375-92-8   | 0.002 | µg/L                              | <0.002          | <0.002           | 0.00     | No Limit            |
|                                                         | EP231X-LL: Perfluorooctane sulfonic acid<br>(PFOS) | 1763-23-1                                            | 0.002      | µg/L  | 0.042                             | 0.041           | 0.00             | 0% - 20% |                     |
|                                                         |                                                    | EP231X-LL: Perfluorodecane sulfonic acid<br>(PFDS)   | 335-77-3   | 0.002 | µg/L                              | <0.002          | <0.002           | 0.00     | No Limit            |
| ES1919244-055                                           | Anonymous                                          | EP231X-LL: Perfluorobutane sulfonic acid (PFBS)      | 375-73-5   | 0.002 | µg/L                              | <0.002          | <0.002           | 0.00     | No Limit            |
|                                                         |                                                    | EP231X-LL: Perfluoropentane sulfonic acid<br>(PFPeS) | 2706-91-4  | 0.002 | µg/L                              | <0.002          | <0.002           | 0.00     | No Limit            |
|                                                         |                                                    | EP231X-LL: Perfluorohexane sulfonic acid<br>(PFHxS)  | 355-46-4   | 0.002 | µg/L                              | 0.007           | 0.007            | 0.00     | No Limit            |
|                                                         |                                                    | EP231X-LL: Perfluoroheptane sulfonic acid<br>(PFHpS) | 375-92-8   | 0.002 | µg/L                              | <0.002          | <0.002           | 0.00     | No Limit            |
|                                                         |                                                    | EP231X-LL: Perfluorooctane sulfonic acid<br>(PFOS)   | 1763-23-1  | 0.002 | µg/L                              | 0.004           | 0.004            | 0.00     | No Limit            |
|                                                         |                                                    | EP231X-LL: Perfluorodecane sulfonic acid<br>(PFDS)   | 335-77-3   | 0.002 | µg/L                              | <0.002          | <0.002           | 0.00     | No Limit            |
| EP231B: Perfluoroa                                      | kyl Carboxylic Acids(                              | QC Lot: 2424635)                                     |            |       |                                   |                 |                  |          |                     |
| ES1919201-001                                           | Anonymous                                          | EP231X-LL: Perfluoropentanoic acid (PFPeA)           | 2706-90-3  | 0.002 | µg/L                              | 0.004           | 0.004            | 0.00     | No Limit            |
|                                                         |                                                    | EP231X-LL: Perfluorohexanoic acid (PFHxA)            | 307-24-4   | 0.002 | µg/L                              | 0.008           | 0.009            | 21.4     | No Limit            |

| Page       | : 3 of 7      |
|------------|---------------|
| Work Order | : ES1919430   |
| Client     | : GHD PTY LTD |
| Project    | : 413256100   |



| Sub-Matrix: WATER    |                             |                                                                         | [          | Laboratory Duplicate (DUP) Report |      |                 |                  |         |                     |
|----------------------|-----------------------------|-------------------------------------------------------------------------|------------|-----------------------------------|------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID            | Method: Compound                                                        | CAS Number | LOR                               | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP231B: Perfluoroall | cyl Carboxylic Acids (QC Lo | ot: 2424635) - continued                                                |            |                                   |      |                 |                  |         |                     |
| ES1919201-001        | Anonymous                   | EP231X-LL: Perfluoroheptanoic acid (PFHpA)                              | 375-85-9   | 0.002                             | µg/L | 0.002           | 0.003            | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluorooctanoic acid (PFOA)                                | 335-67-1   | 0.002                             | µg/L | <0.002          | 0.002            | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluorononanoic acid (PFNA)                                | 375-95-1   | 0.002                             | µg/L | <0.002          | <0.002           | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluorodecanoic acid (PFDA)                                | 335-76-2   | 0.002                             | µg/L | <0.002          | <0.002           | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluoroundecanoic acid (PFUnDA)                            | 2058-94-8  | 0.002                             | µg/L | <0.002          | <0.002           | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluorododecanoic acid (PFDoDA)                            | 307-55-1   | 0.002                             | µg/L | <0.002          | <0.002           | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluorotridecanoic acid (PFTrDA)                           | 72629-94-8 | 0.002                             | µg/L | <0.002          | <0.002           | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluorotetradecanoic acid                                  | 376-06-7   | 0.005                             | µg/L | <0.005          | <0.005           | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluorohexadecanoic acid<br>(PFHxDA)                       | 67905-19-5 | 0.005                             | µg/L | <0.005          | <0.005           | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluorobutanoic acid (PFBA)                                | 375-22-4   | 0.01                              | µg/L | <0.01           | <0.01            | 0.00    | No Limit            |
| ES1919244-055        | Anonymous                   | EP231X-LL: Perfluoropentanoic acid (PFPeA)                              | 2706-90-3  | 0.002                             | µg/L | <0.002          | <0.002           | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluorohexanoic acid (PFHxA)                               | 307-24-4   | 0.002                             | µg/L | <0.002          | <0.002           | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluoroheptanoic acid (PFHpA)                              | 375-85-9   | 0.002                             | µg/L | <0.002          | <0.002           | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluorooctanoic acid (PFOA)                                | 335-67-1   | 0.002                             | µg/L | <0.002          | <0.002           | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluorononanoic acid (PFNA)                                | 375-95-1   | 0.002                             | µg/L | <0.002          | <0.002           | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluorodecanoic acid (PFDA)                                | 335-76-2   | 0.002                             | µg/L | <0.002          | <0.002           | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluoroundecanoic acid (PFUnDA)                            | 2058-94-8  | 0.002                             | µg/L | <0.002          | <0.002           | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluorododecanoic acid (PFDoDA)                            | 307-55-1   | 0.002                             | µg/L | <0.002          | <0.002           | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluorotridecanoic acid (PFTrDA)                           | 72629-94-8 | 0.002                             | µg/L | <0.002          | <0.002           | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluorotetradecanoic acid<br>(PFTeDA)                      | 376-06-7   | 0.005                             | µg/L | <0.005          | <0.005           | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluorohexadecanoic acid<br>(PFHxDA)                       | 67905-19-5 | 0.005                             | µg/L | <0.005          | <0.005           | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluorobutanoic acid (PFBA)                                | 375-22-4   | 0.01                              | µg/L | <0.01           | <0.01            | 0.00    | No Limit            |
| EP231C: Perfluoroalk | vl Sulfonamides (QC Lot: 2  | 424635)                                                                 |            |                                   |      |                 |                  |         |                     |
| ES1919201-001        | Anonymous                   | EP231X-LL: Perfluorooctane sulfonamide (EOSA)                           | 754-91-6   | 0.002                             | ua/L | < 0.002         | < 0.002          | 0.00    | No Limit            |
|                      |                             | EP231X-LL: N-Methyl perfluorooctane<br>sulfonamidoacetic acid (MeEOSAA) | 2355-31-9  | 0.002                             | μg/L | <0.002          | <0.002           | 0.00    | No Limit            |
|                      |                             | EP231X-LL: N-Ethyl perfluorooctane<br>sulfonamidoacetic acid (EtEOSAA)  | 2991-50-6  | 0.002                             | µg/L | <0.002          | <0.002           | 0.00    | No Limit            |
|                      |                             | EP231X-LL: N-Methyl perfluorooctane<br>sulfonamide (MeEQSA)             | 31506-32-8 | 0.005                             | µg/L | <0.005          | <0.005           | 0.00    | No Limit            |
|                      |                             | EP231X-LL: N-Ethyl perfluorooctane sulfonamide<br>(EtFOSA)              | 4151-50-2  | 0.005                             | µg/L | <0.005          | <0.005           | 0.00    | No Limit            |
|                      |                             | EP231X-LL: N-Methyl perfluorooctane<br>sulfonamidoethanol (MeFOSE)      | 24448-09-7 | 0.005                             | µg/L | <0.005          | <0.005           | 0.00    | No Limit            |
|                      |                             | EP231X-LL: N-Ethyl perfluorooctane<br>sulfonamidoethanol (EtFOSE)       | 1691-99-2  | 0.005                             | µg/L | <0.005          | <0.005           | 0.00    | No Limit            |
| ES1919244-055        | Anonymous                   | EP231X-LL: Perfluorooctane sulfonamide (FOSA)                           | 754-91-6   | 0.002                             | µg/L | <0.002          | <0.002           | 0.00    | No Limit            |

| Page       | : 4 of 7      |
|------------|---------------|
| Work Order | : ES1919430   |
| Client     | : GHD PTY LTD |
| Project    | : 413256100   |



| Sub-Matrix: WATER    |                             |                                                 |             | Laboratory Duplicate (DUP) Report |      |                 |                  |         |                     |
|----------------------|-----------------------------|-------------------------------------------------|-------------|-----------------------------------|------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID            | Method: Compound                                | CAS Number  | LOR                               | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP231C: Perfluoroal  | kyl Sulfonamides (QC Lot: 2 | 2424635) - continued                            |             |                                   |      |                 |                  |         |                     |
| ES1919244-055        | Anonymous                   | EP231X-LL: N-Methyl perfluorooctane             | 2355-31-9   | 0.002                             | µg/L | <0.002          | <0.002           | 0.00    | No Limit            |
|                      |                             | sulfonamidoacetic acid (MeFOSAA)                |             |                                   |      |                 |                  |         |                     |
|                      |                             | EP231X-LL: N-Ethyl perfluorooctane              | 2991-50-6   | 0.002                             | µg/L | <0.002          | <0.002           | 0.00    | No Limit            |
|                      |                             | sulfonamidoacetic acid (EtFOSAA)                |             |                                   |      |                 |                  |         |                     |
|                      |                             | EP231X-LL: N-Methyl perfluorooctane             | 31506-32-8  | 0.005                             | µg/L | <0.005          | <0.005           | 0.00    | No Limit            |
|                      |                             | sulfonamide (MeFOSA)                            |             |                                   |      |                 |                  |         |                     |
|                      |                             | EP231X-LL: N-Ethyl perfluorooctane sulfonamide  | 4151-50-2   | 0.005                             | µg/L | <0.005          | <0.005           | 0.00    | No Limit            |
|                      |                             | (EtFOSA)                                        |             |                                   |      |                 |                  |         |                     |
|                      |                             | EP231X-LL: N-Methyl perfluorooctane             | 24448-09-7  | 0.005                             | µg/L | <0.005          | <0.005           | 0.00    | No Limit            |
|                      |                             | sulfonamidoethanol (MeFOSE)                     |             |                                   |      |                 |                  |         |                     |
|                      |                             | EP231X-LL: N-Ethyl perfluorooctane              | 1691-99-2   | 0.005                             | µg/L | <0.005          | <0.005           | 0.00    | No Limit            |
|                      |                             | sulfonamidoethanol (EtFOSE)                     |             |                                   |      |                 |                  |         |                     |
| EP231D: (n:2) Fluore | otelomer Sulfonic Acids (Q0 | C Lot: 2424635)                                 |             |                                   |      |                 |                  |         |                     |
| ES1919201-001        | Anonymous                   | EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 | 757124-72-4 | 0.005                             | µg/L | <0.005          | <0.005           | 0.00    | No Limit            |
|                      |                             | FTS)                                            |             |                                   |      |                 |                  |         |                     |
|                      |                             | EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 | 27619-97-2  | 0.005                             | µg/L | 0.050           | 0.056            | 12.0    | 0% - 50%            |
|                      |                             | FTS)                                            |             |                                   |      |                 |                  |         |                     |
|                      |                             | EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 | 39108-34-4  | 0.005                             | μg/L | <0.005          | <0.005           | 0.00    | No Limit            |
|                      |                             | FTS)                                            |             |                                   |      |                 |                  |         |                     |
|                      |                             | EP231X-LL: 10:2 Fluorotelomer sulfonic acid     | 120226-60-0 | 0.005                             | µg/L | <0.005          | <0.005           | 0.00    | No Limit            |
|                      |                             | (10:2 FTS)                                      |             |                                   |      |                 |                  |         |                     |
| ES1919244-055        | Anonymous                   | EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 | 757124-72-4 | 0.005                             | µg/L | <0.005          | <0.005           | 0.00    | No Limit            |
|                      |                             | FTS)                                            |             |                                   |      |                 |                  |         |                     |
|                      |                             | EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 | 27619-97-2  | 0.005                             | µg/L | <0.005          | <0.005           | 0.00    | No Limit            |
|                      |                             | FTS)                                            |             |                                   |      |                 |                  |         |                     |
|                      |                             | EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 | 39108-34-4  | 0.005                             | µg/L | <0.005          | <0.005           | 0.00    | No Limit            |
|                      |                             | FTS)                                            |             |                                   |      |                 |                  |         |                     |
|                      |                             | EP231X-LL: 10:2 Fluorotelomer sulfonic acid     | 120226-60-0 | 0.005                             | µg/L | <0.005          | <0.005           | 0.00    | No Limit            |
|                      |                             | (10:2 FTS)                                      |             |                                   |      |                 |                  |         |                     |



#### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                                      |             |       |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |
|------------------------------------------------------------------------|-------------|-------|------|-------------------|---------------------------------------|--------------------|----------|------------|
|                                                                        |             |       |      | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                                                       | CAS Number  | LOR   | Unit | Result            | Concentration                         | LCS                | Low      | High       |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 2424635                  | 5)          |       |      |                   |                                       |                    |          |            |
| EP231X-LL: Perfluorobutane sulfonic acid (PFBS)                        | 375-73-5    | 0.002 | μg/L | <0.002            | 0.05 µg/L                             | 91.2               | 50       | 130        |
| EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)                      | 2706-91-4   | 0.002 | μg/L | <0.002            | 0.05 µg/L                             | 93.6               | 50       | 130        |
| EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)                       | 355-46-4    | 0.002 | μg/L | <0.002            | 0.05 µg/L                             | 87.2               | 50       | 130        |
| EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)                      | 375-92-8    | 0.002 | μg/L | <0.002            | 0.05 µg/L                             | 97.4               | 50       | 130        |
| EP231X-LL: Perfluorooctane sulfonic acid (PFOS)                        | 1763-23-1   | 0.002 | μg/L | <0.002            | 0.05 µg/L                             | 90.2               | 50       | 130        |
| EP231X-LL: Perfluorodecane sulfonic acid (PFDS)                        | 335-77-3    | 0.002 | μg/L | <0.002            | 0.05 µg/L                             | 87.6               | 40       | 130        |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 2424                   | 635)        |       |      |                   |                                       |                    |          |            |
| EP231X-LL: Perfluorobutanoic acid (PFBA)                               | 375-22-4    | 0.01  | μg/L | <0.01             | 0.25 μg/L                             | 63.1               | 50       | 130        |
| EP231X-LL: Perfluoropentanoic acid (PFPeA)                             | 2706-90-3   | 0.002 | μg/L | <0.002            | 0.05 µg/L                             | 98.2               | 50       | 130        |
| EP231X-LL: Perfluorohexanoic acid (PFHxA)                              | 307-24-4    | 0.002 | μg/L | <0.002            | 0.05 µg/L                             | 107                | 50       | 130        |
| EP231X-LL: Perfluoroheptanoic acid (PFHpA)                             | 375-85-9    | 0.002 | μg/L | <0.002            | 0.05 μg/L                             | 80.4               | 50       | 130        |
| EP231X-LL: Perfluorooctanoic acid (PFOA)                               | 335-67-1    | 0.002 | μg/L | <0.002            | 0.05 µg/L                             | 105                | 50       | 130        |
| EP231X-LL: Perfluorononanoic acid (PFNA)                               | 375-95-1    | 0.002 | μg/L | <0.002            | 0.05 µg/L                             | 94.8               | 50       | 130        |
| EP231X-LL: Perfluorodecanoic acid (PFDA)                               | 335-76-2    | 0.002 | μg/L | <0.002            | 0.05 µg/L                             | 94.2               | 50       | 130        |
| EP231X-LL: Perfluoroundecanoic acid (PFUnDA)                           | 2058-94-8   | 0.002 | μg/L | <0.002            | 0.05 µg/L                             | 104                | 40       | 130        |
| EP231X-LL: Perfluorododecanoic acid (PFDoDA)                           | 307-55-1    | 0.002 | μg/L | <0.002            | 0.05 µg/L                             | 118                | 40       | 130        |
| EP231X-LL: Perfluorotridecanoic acid (PFTrDA)                          | 72629-94-8  | 0.002 | μg/L | <0.002            | 0.05 µg/L                             | 92.4               | 40       | 130        |
| EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)                        | 376-06-7    | 0.005 | μg/L | <0.005            | 0.125 µg/L                            | 106                | 40       | 130        |
| EP231X-LL: Perfluorohexadecanoic acid (PFHxDA)                         | 67905-19-5  | 0.005 | μg/L | <0.005            | 0.05 µg/L                             | 57.0               | 50       | 130        |
| EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2424635)                   | )           |       |      |                   |                                       |                    |          |            |
| EP231X-LL: Perfluorooctane sulfonamide (FOSA)                          | 754-91-6    | 0.002 | μg/L | <0.002            | 0.05 µg/L                             | 70.6               | 40       | 130        |
| EP231X-LL: N-Methyl perfluorooctane sulfonamide<br>(MeFOSA)            | 31506-32-8  | 0.005 | µg/L | <0.005            | 0.125 μg/L                            | 68.9               | 40       | 130        |
| EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)                | 4151-50-2   | 0.005 | μg/L | <0.005            | 0.125 µg/L                            | 87.7               | 40       | 130        |
| EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol<br>(MeFOSE)     | 24448-09-7  | 0.005 | µg/L | <0.005            | 0.125 μg/L                            | 91.2               | 50       | 130        |
| EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol<br>(EtFOSE)      | 1691-99-2   | 0.005 | µg/L | <0.005            | 0.125 μg/L                            | 79.5               | 40       | 130        |
| EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)   | 2355-31-9   | 0.002 | µg/L | <0.002            | 0.05 μg/L                             | 101                | 50       | 130        |
| EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic<br>acid (EtFOSAA) | 2991-50-6   | 0.002 | µg/L | <0.002            | 0.05 µg/L                             | 113                | 40       | 130        |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 24                  | 124635)     |       |      |                   |                                       |                    |          |            |
| EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                   | 757124-72-4 | 0.005 | µg/L | <0.005            | 0.05 µg/L                             | 92.6               | 50       | 130        |

| Page       | : 6 of 7      |
|------------|---------------|
| Work Order | : ES1919430   |
| Client     | : GHD PTY LTD |
| Project    | : 413256100   |



| Sub-Matrix: WATER                                      | Method Blank (MB)  | Laboratory Control Spike (LCS) Report |                    |                     |               |      |     |      |
|--------------------------------------------------------|--------------------|---------------------------------------|--------------------|---------------------|---------------|------|-----|------|
|                                                        | Report             | Spike                                 | Spike Recovery (%) | Recovery Limits (%) |               |      |     |      |
| Method: Compound                                       | CAS Number         | LOR                                   | Unit               | Result              | Concentration | LCS  | Low | High |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot:     | 2424635) - continu | ed                                    |                    |                     |               |      |     |      |
| EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2         | 0.005                                 | µg/L               | <0.005              | 0.05 µg/L     | 99.0 | 50  | 130  |
| EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4         | 0.005                                 | µg/L               | <0.005              | 0.05 µg/L     | 83.8 | 50  | 130  |
| EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0        | 0.005                                 | µg/L               | <0.005              | 0.05 µg/L     | 116  | 50  | 130  |

### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                                          |                                                             |            | Ма            | atrix Spike (MS) Report |            |           |
|----------------------|------------------------------------------|-------------------------------------------------------------|------------|---------------|-------------------------|------------|-----------|
|                      |                                          |                                                             |            | Spike         | SpikeRecovery(%)        | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID                         | Method: Compound                                            | CAS Number | Concentration | MS                      | Low        | High      |
| EP231A: Perfluoro    | alkyl Sulfonic Acids (QCLot: 2424635)    |                                                             |            |               |                         |            |           |
| ES1919201-002        | Anonymous                                | EP231X-LL: Perfluorobutane sulfonic acid (PFBS)             | 375-73-5   | 0.05 µg/L     | 74.4                    | 50         | 130       |
|                      |                                          | EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)           | 2706-91-4  | 0.05 µg/L     | 78.2                    | 50         | 130       |
|                      |                                          | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)            | 355-46-4   | 0.05 µg/L     | 61.6                    | 50         | 130       |
|                      |                                          | EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)           | 375-92-8   | 0.05 µg/L     | 87.8                    | 50         | 130       |
|                      |                                          | EP231X-LL: Perfluorooctane sulfonic acid (PFOS)             | 1763-23-1  | 0.05 µg/L     | 81.4                    | 50         | 130       |
|                      |                                          | EP231X-LL: Perfluorodecane sulfonic acid (PFDS)             | 335-77-3   | 0.05 µg/L     | 56.8                    | 30         | 130       |
| EP231B: Perfluoro    | oalkyl Carboxylic Acids (QCLot: 2424635) |                                                             |            |               |                         |            |           |
| ES1919201-002        | Anonymous                                | EP231X-LL: Perfluorobutanoic acid (PFBA)                    | 375-22-4   | 0.25 µg/L     | 81.2                    | 30         | 130       |
|                      |                                          | EP231X-LL: Perfluoropentanoic acid (PFPeA)                  | 2706-90-3  | 0.05 µg/L     | 82.4                    | 50         | 130       |
|                      |                                          | EP231X-LL: Perfluorohexanoic acid (PFHxA)                   | 307-24-4   | 0.05 µg/L     | 103                     | 50         | 130       |
|                      |                                          | EP231X-LL: Perfluoroheptanoic acid (PFHpA)                  | 375-85-9   | 0.05 µg/L     | 78.6                    | 50         | 130       |
|                      |                                          | EP231X-LL: Perfluorooctanoic acid (PFOA)                    | 335-67-1   | 0.05 µg/L     | 93.6                    | 50         | 130       |
|                      |                                          | EP231X-LL: Perfluorononanoic acid (PFNA)                    | 375-95-1   | 0.05 µg/L     | 84.8                    | 50         | 130       |
|                      |                                          | EP231X-LL: Perfluorodecanoic acid (PFDA)                    | 335-76-2   | 0.05 µg/L     | 67.8                    | 50         | 130       |
|                      |                                          | EP231X-LL: Perfluoroundecanoic acid (PFUnDA)                | 2058-94-8  | 0.05 µg/L     | 68.6                    | 30         | 130       |
|                      |                                          | EP231X-LL: Perfluorododecanoic acid (PFDoDA)                | 307-55-1   | 0.05 µg/L     | 68.6                    | 30         | 130       |
|                      |                                          | EP231X-LL: Perfluorotridecanoic acid (PFTrDA)               | 72629-94-8 | 0.05 µg/L     | 41.2                    | 30         | 130       |
|                      |                                          | EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)             | 376-06-7   | 0.125 µg/L    | 46.6                    | 30         | 130       |
|                      |                                          | EP231X-LL: Perfluorohexadecanoic acid (PFHxDA)              | 67905-19-5 | 0.05 µg/L     | 117                     | 30         | 130       |
| EP231C: Perfluoro    | alkyl Sulfonamides (QCLot: 2424635)      |                                                             |            |               |                         |            |           |
| ES1919201-002        | Anonymous                                | EP231X-LL: Perfluorooctane sulfonamide (FOSA)               | 754-91-6   | 0.05 µg/L     | 68.2                    | 30         | 130       |
|                      |                                          | EP231X-LL: N-Methyl perfluorooctane sulfonamide<br>(MeFOSA) | 31506-32-8 | 0.125 µg/L    | 65.9                    | 30         | 130       |
|                      |                                          | EP231X-LL: N-Ethyl perfluorooctane sulfonamide<br>(EtFOSA)  | 4151-50-2  | 0.125 µg/L    | 56.6                    | 30         | 130       |

| Page       | : 7 of 7      |
|------------|---------------|
| Work Order | : ES1919430   |
| Client     | : GHD PTY LTD |
| Project    | : 413256100   |



| Sub-Matrix: WATER    |                                                 |                                                                         |             | Matrix Spike (MS) Report |                  |            |           |  |
|----------------------|-------------------------------------------------|-------------------------------------------------------------------------|-------------|--------------------------|------------------|------------|-----------|--|
|                      |                                                 |                                                                         |             | Spike                    | SpikeRecovery(%) | Recovery L | imits (%) |  |
| Laboratory sample ID | Client sample ID                                | Method: Compound                                                        | CAS Number  | Concentration            | MS               | Low        | High      |  |
| EP231C: Perfluoro    | alkyl Sulfonamides (QCLot: 2424635) - continued |                                                                         |             |                          |                  |            |           |  |
| ES1919201-002        | Anonymous                                       | EP231X-LL: N-Methyl perfluorooctane<br>sulfonamidoethanol (MeFOSE)      | 24448-09-7  | 0.125 µg/L               | 72.5             | 30         | 130       |  |
|                      |                                                 | EP231X-LL: N-Ethyl perfluorooctane<br>sulfonamidoethanol (EtFOSE)       | 0.125 μg/L  | 72.7                     | 30               | 130        |           |  |
|                      |                                                 | EP231X-LL: N-Methyl perfluorooctane<br>sulfonamidoacetic acid (MeFOSAA) | 0.05 µg/L   | 69.0                     | 30               | 130        |           |  |
|                      |                                                 | EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic<br>acid (EtFOSAA)  | 2991-50-6   | 0.05 µg/L                | 57.2             | 30         | 130       |  |
| EP231D: (n:2) Fluc   | protelomer Sulfonic Acids (QCLot: 2424635)      |                                                                         |             |                          |                  |            |           |  |
| ES1919201-002        | Anonymous                                       | EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                    | 757124-72-4 | 0.05 µg/L                | 73.4             | 50         | 130       |  |
|                      |                                                 | EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                    | 27619-97-2  | 0.05 µg/L                | 91.6             | 50         | 130       |  |
|                      |                                                 | EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                    | 39108-34-4  | 0.05 µg/L                | 73.4             | 50         | 130       |  |
|                      |                                                 | EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                  | 120226-60-0 | 0.05 µg/L                | 82.6             | 50         | 130       |  |



| QA/QC Compliance Assessment to assist with Quality Review |                  |                         |                                 |  |  |  |  |
|-----------------------------------------------------------|------------------|-------------------------|---------------------------------|--|--|--|--|
| Work Order                                                | : ES1919430      | Page                    | : 1 of 4                        |  |  |  |  |
| Client                                                    | : GHD PTY LTD    | Laboratory              | : Environmental Division Sydney |  |  |  |  |
| Contact                                                   | : MS KIARA CROOK | Telephone               | : +61 7 3552 8639               |  |  |  |  |
| Project                                                   | : 413256100      | Date Samples Received   | : 21-Jun-2019                   |  |  |  |  |
| Site                                                      | :                | Issue Date              | : 28-Jun-2019                   |  |  |  |  |
| Sampler                                                   | : KIARA CROOK    | No. of samples received | : 2                             |  |  |  |  |
| Order number                                              | :                | No. of samples analysed | : 2                             |  |  |  |  |

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

### Summary of Outliers

#### **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

#### **Outliers : Analysis Holding Time Compliance**

• NO Analysis Holding Time Outliers exist.

#### **Outliers : Frequency of Quality Control Samples**

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

| Page       | : 2 of 4      |
|------------|---------------|
| Work Order | ES1919430     |
| Client     | : GHD PTY LTD |
| Project    | : 413256100   |



#### Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Evaluation: | <b>x</b> : | = Holding | time | breach; | ~ | = | Within | holding | time. |
|-------------|------------|-----------|------|---------|---|---|--------|---------|-------|
|-------------|------------|-----------|------|---------|---|---|--------|---------|-------|

| Matrix: WATER                             |      |             |                          |                    | Evaluation | : × = Holding time | breach ; 🗸 = Withi | n holding time. |
|-------------------------------------------|------|-------------|--------------------------|--------------------|------------|--------------------|--------------------|-----------------|
| Method                                    |      | Sample Date | Extraction / Preparation |                    |            | Analysis           |                    |                 |
| Container / Client Sample ID(s)           |      |             | Date extracted           | Due for extraction | Evaluation | Date analysed      | Due for analysis   | Evaluation      |
| EP231A: Perfluoroalkyl Sulfonic Acids     |      |             |                          |                    |            |                    |                    |                 |
| HDPE (no PTFE) (EP231X-LL)<br>RN12065,    | QC01 | 20-Jun-2019 | 25-Jun-2019              | 17-Dec-2019        | ~          | 25-Jun-2019        | 17-Dec-2019        | ✓               |
| EP231B: Perfluoroalkyl Carboxylic Acids   |      |             |                          |                    |            |                    |                    |                 |
| HDPE (no PTFE) (EP231X-LL)<br>RN12065,    | QC01 | 20-Jun-2019 | 25-Jun-2019              | 17-Dec-2019        | 1          | 25-Jun-2019        | 17-Dec-2019        | ~               |
| EP231C: Perfluoroalkyl Sulfonamides       |      |             |                          |                    |            |                    |                    |                 |
| HDPE (no PTFE) (EP231X-LL)<br>RN12065,    | QC01 | 20-Jun-2019 | 25-Jun-2019              | 17-Dec-2019        | 1          | 25-Jun-2019        | 17-Dec-2019        | ✓               |
| EP231D: (n:2) Fluorotelomer Sulfonic Acid | ls   |             |                          |                    |            |                    |                    |                 |
| HDPE (no PTFE) (EP231X-LL)<br>RN12065,    | QC01 | 20-Jun-2019 | 25-Jun-2019              | 17-Dec-2019        | 1          | 25-Jun-2019        | 17-Dec-2019        | ~               |
| EP231P: PFAS Sums                         |      |             |                          |                    |            |                    |                    |                 |
| HDPE (no PTFE) (EP231X-LL)<br>RN12065,    | QC01 | 20-Jun-2019 | 25-Jun-2019              | 17-Dec-2019        | 1          | 25-Jun-2019        | 17-Dec-2019        | ✓               |

| Page       | : 3 of 4      |
|------------|---------------|
| Work Order | : ES1919430   |
| Client     | : GHD PTY LTD |
| Project    | 413256100     |



## **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER Evaluation: * = Quality Control frequency not within specification ; 🗸 = Quality Control frequency within sp |           |       |         |          |                         |   | not within specification ; $\checkmark$ = Quality Control frequency within specification. |
|----------------------------------------------------------------------------------------------------------------------------|-----------|-------|---------|----------|-------------------------|---|-------------------------------------------------------------------------------------------|
| Quality Control Sample Type                                                                                                |           | Count |         | Rate (%) |                         |   | Quality Control Specification                                                             |
| Analytical Methods                                                                                                         | Method    | 00    | Reaular | Actual   | Jal Expected Evaluation |   |                                                                                           |
| Laboratory Duplicates (DUP)                                                                                                |           |       |         |          |                         |   |                                                                                           |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS                                                                        | EP231X-LL | 2     | 14      | 14.29    | 10.00                   | ✓ | NEPM 2013 B3 & ALS QC Standard                                                            |
| Laboratory Control Samples (LCS)                                                                                           |           |       |         |          |                         |   |                                                                                           |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS                                                                        | EP231X-LL | 1     | 14      | 7.14     | 5.00                    | ✓ | NEPM 2013 B3 & ALS QC Standard                                                            |
| Method Blanks (MB)                                                                                                         |           |       |         |          |                         |   |                                                                                           |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS                                                                        | EP231X-LL | 1     | 14      | 7.14     | 5.00                    | ✓ | NEPM 2013 B3 & ALS QC Standard                                                            |
| Matrix Spikes (MS)                                                                                                         |           |       |         |          |                         |   |                                                                                           |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS                                                                        | EP231X-LL | 1     | 14      | 7.14     | 5.00                    | ✓ | NEPM 2013 B3 & ALS QC Standard                                                            |

| Page       | : 4 of 4      |
|------------|---------------|
| Work Order | : ES1919430   |
| Client     | : GHD PTY LTD |
| Project    | : 413256100   |



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                     | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------|-----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Per- and Polyfluoroalkyl Substances<br>(PFAS by LCMSMS | EP231X-LL | WATER  | In-house: Analysis of fresh and saline waters by solid phase extraction followed by LC-Electrospray-MS-MS,<br>Negative Mode using MRM. Where commercially available, isotopically labelled analogues of the target analytes<br>are used as internal standards for quantification. Where a labelled analogue is not commercially available, the<br>internal standard with similar chemistry and the closest retention time to the target is used for quantification. The<br>DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified<br>using a certified, traceable standard consisting of linear and branched PFOS isomers. This method complies<br>with the quality control definitions as stated in QSM 5.1. Data is reviewed in line with the DQOs as stated in<br>QSM5.1 |
| Preparation Methods                                    | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SPE preparation for LL and saline PFCs                 | EP231-SPE | WATER  | In house                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

GHD

Level 7, 24 Mitchell Street Darwin NT 0800 T: 61 8 8982 0100 F: 61 8 8981 1075 E: drwmail@ghd.com

#### © GHD 2019

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

GHDDocId/https://projects.ghd.com/oc/sqoc2/mackaycontaminationi/Delivery/Documents/41325610 0-REP-0\_Yulara Airport RN12065 Sampling.docx

**Document Status** 

| Revision | Author  | Reviewer  |           | Approved for Issue |           |           |  |
|----------|---------|-----------|-----------|--------------------|-----------|-----------|--|
|          |         | Name      | Signature | Name               | Signature | Date      |  |
| Rev A    | K Crook | P. Abbott | Fitsson . | D. Todd            | Fold      | 20/8/2019 |  |
|          |         |           |           |                    |           |           |  |
|          |         |           |           |                    |           |           |  |

# www.ghd.com

