ATC – Pilot Miscommunication
Human Factors

Human Factors:
• “designed for human use”
• “Intuitive”

Risk defined:
“the effect of uncertainty on objectives” (ANZ/ISO 3100)
Human Factors

Risk defined:
“the effect of uncertainty on objectives” (ANZ/ISO 3100)

- an effect may be positive, negative, or a deviation from the expected.
- an objective may be financial, related to health and safety, environmental or defined in other terms, and can apply at different organizational levels.
- risk is often described by an event(s), a change in circumstances, a consequence, or a combination of these and how they may affect the achievement of objectives.
- risk can be expressed in terms of a combination of the consequences of an event or a change in circumstances, and their likelihood.
Miscommunication

Background
• Miscommunication is common
• One factor in many accidents

Controls
• Lingua Franca – Aviation English
• Standard phraseology
• ELP requirements
• Word selection (at take-off vs ready for take-off)
• ATC
• Task sharing (co-pilots in charge of radio)
Miscommunication

Little is known (documented):

• ICAO recommends speech < 100 words per minute
• EUROCONTROL suggests limiting number of elements/items per transmission (supported by Barshi, 1997)
• ICAO suggests native English speakers should assist

“ICAO clearly states that, in Aviation English interactions, native English speakers share the responsibility of ensuring effective communication through the use of what could be considered accommodation strategies (see ICAO, 2010: 5.3.3.2)”
General Aviation

Aim:

• Investigate relationship between four known factors and communication performance
 • Prosodic features (pauses)
 • Information density (# of items per transmission)
 • Workload (pilot workload)
 • Frequency congestion

• Is there a native language advantage?

• Is experience or qualification related to communication performance?
Native English pilots committed fewer communication errors (as a percentage) than non-native pilots (irrespective of flight)

<table>
<thead>
<tr>
<th>Flight Condition</th>
<th>ESL (n = 9)</th>
<th>SD</th>
<th>NS (n = 8)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1A (pauses)</td>
<td>48.61</td>
<td>8.72</td>
<td>65.63</td>
<td>10.56</td>
</tr>
<tr>
<td>F1B (no pauses)</td>
<td>49.31</td>
<td>21.30</td>
<td>65.63</td>
<td>6.68</td>
</tr>
</tbody>
</table>
GA – Pauses vs No Pauses

Pilots with a CPL or higher licence qualification committed fewer communication errors (as a percentage) than pilots with a PPL or lower qualification (irrespective of flight)

<table>
<thead>
<tr>
<th>Flight Condition</th>
<th>Licence Type</th>
<th>PPL or lower (n = 7)</th>
<th>SD</th>
<th>CPL or higher (n = 10)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1A (pauses)</td>
<td></td>
<td>50.00</td>
<td>10.21</td>
<td>61.25</td>
<td>12.77</td>
</tr>
<tr>
<td>F1B (no pauses)</td>
<td></td>
<td>46.43</td>
<td>20.68</td>
<td>64.38</td>
<td>11.43</td>
</tr>
</tbody>
</table>
Percentage of accurate transmissions distributed across native language background (NS vs. ESL) and licence type (PPL or lower vs. CPL or higher) for flight with no pauses.
GA – Information Density

Fewer communication errors (as a percentage) were present in flight condition with 3 or less items than in flight with 4 or more items.

<table>
<thead>
<tr>
<th>Flight Condition</th>
<th>Native Language Background</th>
<th>ESL (n = 9)</th>
<th>SD</th>
<th>NS (n = 8)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2A (3 or less item)</td>
<td></td>
<td>50.62</td>
<td>22.29</td>
<td>65.28</td>
<td>13.53</td>
</tr>
<tr>
<td>F2B (4 or more items)</td>
<td></td>
<td>36.67</td>
<td>24.75</td>
<td>46.88</td>
<td>13.61</td>
</tr>
</tbody>
</table>

Irrespective of language background or flight qualification, increasing the number of items in a transmission significantly affected pilots’ communication performance.
Fewer communication errors (as a percentage) were present in the low workload flight compared to the high workload flight.

Irrespective of language background or flight qualification, increasing pilots workload adversely affects their ability to communicate effectively.
GA – Congested Radio Frequency

No difference based on flight, language background, or pilot qualification.

<table>
<thead>
<tr>
<th>Flight Condition</th>
<th>ESL (n = 9)</th>
<th>SD</th>
<th>NS (n = 8)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>F4A (no radio congestion)</td>
<td>61.62</td>
<td>18.62</td>
<td>76.14</td>
<td>13.69</td>
</tr>
<tr>
<td>F4B (high radio congestion)</td>
<td>66.67</td>
<td>14.38</td>
<td>70.45</td>
<td>16.65</td>
</tr>
</tbody>
</table>
General Aviation

Summary:

• Pauses in transmissions improve communication
• Pauses more advantageous for ESL pilots
• Pauses more advantageous for PPL or lower licence holders
• Reducing the number of items in a transmission improves communication (irrespective of language or licence)
• Reducing pilots’ workload improves communication (irrespective of language or licence)
• Pilots are good at ignoring irrelevant communication
Commercial Aviation – SYD

Aim

• Investigate *miscommunication* between *native English sounding* and *accented pilots*

• Relationship between *information density* and *communication error*

• Investigate if:
 • type of communication error (*omission or mistake*) varies based on *phase of flight* or *language background*
 • category of communication error (*number of word*) varies based on *phase of flight* or *language background*
Commercial Aviation – SYD

• 18 hours of ATC-Pilot Recording - liveATC
 http://www.liveatc.net
• Sydney Tower, Approach and Departure frequency
• 14 February to 29 April 2016
• Between 0800-1030 and 2100-2130
• Native English sounding pilots vs. Accented pilots
• Approach (Tower & Approach) vs. Departure
Average number of communication errors committed by native English sounding pilots and accented pilots per transmission ($t(205.27) = 2.53, p = .012$).
Average number of mistakes committed by native English sounding pilots and accented pilots per transmission ($t(131.00) = 3.10, p = .002)$.
Average number of numerical errors committed by native English sounding pilots and accented pilots per transmission ($t(219.50) = 2.18, p = .03$).
Commercial Aviation – SYD

No difference based on:

• Phase of flight (Approach vs Departure)
• Omissions (native English sounding vs accented)
• Words (native English sounding vs accented)
Commercial Aviation – SYD

Summary:

• Native English sounding piloted - fewer communication errors compared to accented pilots
• Native English sound pilots – fewer mistakes (not omissions) than native English sounding pilots
• Mistakes predominately with numbers (not words)
Conclusion

Summary:

- Accurate and error free communication elusive
- Proficiency in English language remains a challenge
- # of items in a transmission should be limited
- Qualification not flight experience results in improved communication performance
- Nature of the error differs based language background
 - Mistakes (not omissions) higher with non-native speakers
 - Numbers (not words) more difficult for non-native speakers
Thank you

Questions?

Research team –
Dr Brett Molesworth, Dr Dominique Estival, Ms Qiong Wu
b.molesworth@unsw.edu.au